工場・事業場で発生する振動の対策の進め方とその事例について

第一事業部 技術グループ 坂本正次

目次

1. 防振の基本

防振とは 防振材料の比較1 防振材料の比較2

2. 対策の流れ

3. 事例紹介

事例 1. 鍛造機(エアドロップハンマー)の防振 板ばねから空気ばねへの交換事例

事例 2. 鍛造機(エアドロップハンマー)の防振 絶縁層の浮き基礎上の空気ばね施工

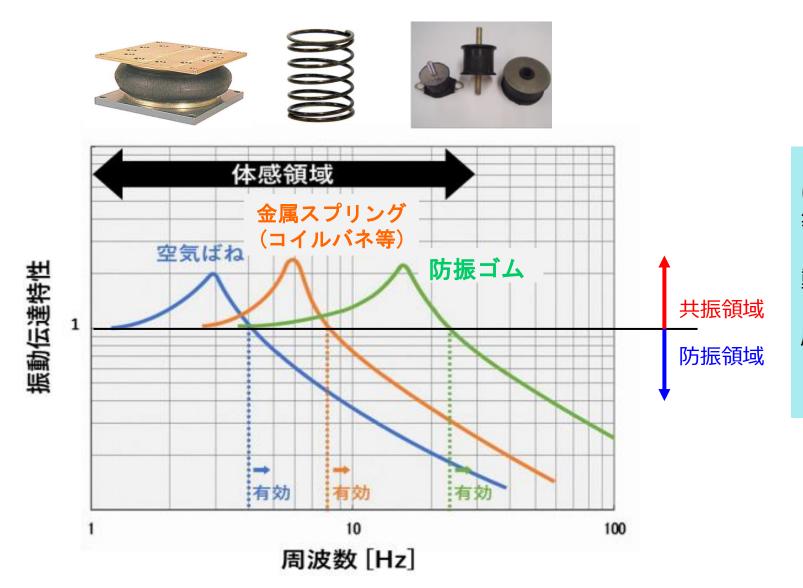
事例3. 大型熱間プレス(スクリュープレス)の防振

事例4. 大型電動式 振動試験装置の防振

事例 5. 鉄骨フレームに設置された リサイクル施設用 ふるい分け装置の振動対策

1. 防振の基本

防振とは

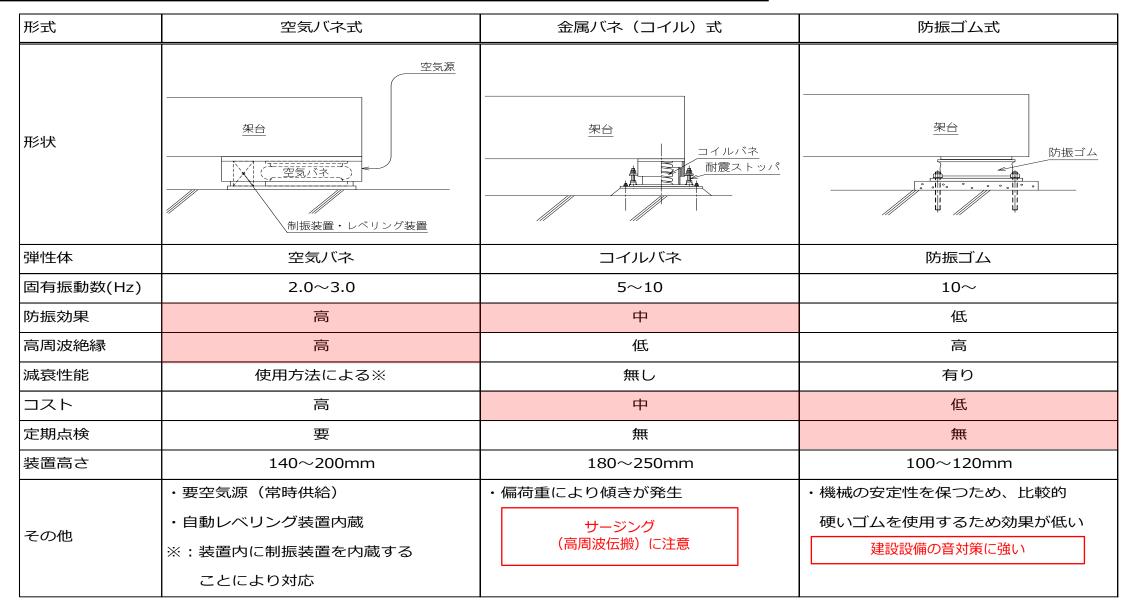

防振とは、振動源と構造物との間に弾性体(コイルばね等)を挿入して、外部への振動伝搬を軽減すること

振動を伝えたくない箇所 (床、構造物、周辺設備など) 「振動源」 「振動源」 「伝搬量低減

1. 防振の基本

防振材料(空気ばね、金属スプリング、防振ゴム)の比較1

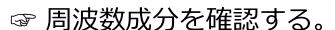
弾性体(防振材料)には、空気 ばね、金属スプリング、防振ゴム 等、様々なものがあります。


空気ばねが最も山となる固有振 動数が低いことがわかります。

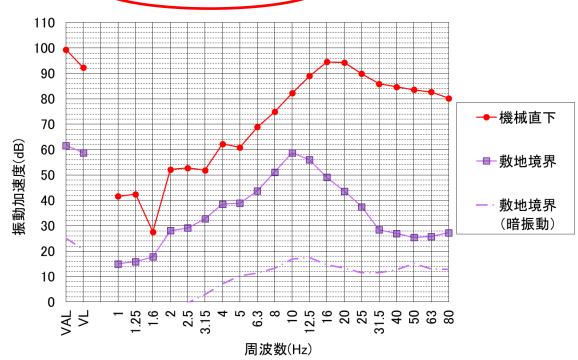
また、防振領域となる周波数が広く、振動伝達特性の数値も小さく、もっとも効果の高いことを示します。

1. 防振の基本

防振材料(空気ばね、金属スプリング、防振ゴム)の比較 2



2. 対策の流れ


- ◆<mark>現状把握〔事前測定〕</mark> ↓
- ◆防振設計 (防振モデルの作成) (加振力の推定)
 - ・防振効果の予測
 - ・機械揺れの予測
- ◆レイアウト、コスト、工程の確認
- ◆設置工事
- ◆検証〔事後測定〕

○ 機械直下と振動影響点(敷地境界等)で、
振動レベルの時系列波形を確認する。

続きが気になる方は

資料はプレミアム会員登録後(無料)にマイページよりダウンロードいただけます。この他にも様々な資料がございますので、ぜひこの機会にご登録下さい!

HP: https://www.yacmo.co.jp/

☑: yacmo-ma@yacmo.co.jp